¥
支付方式
请使用微信扫一扫 扫描二维码支付
请使用支付宝扫一扫 扫描二维码支付
进入到凸优化,难度比以前加强了,主要是概念和定理比较多,比较抽象化,需要结合画图和例题来进行梳理。
1可行下降方向:
2.起作用约束(active constraint)
亦称紧约束或积极约束,是指在某可行点处使不等式约束成为等式的约束。对于可行点x',当gi(x')=0时点x'处于这个约束形成的可行域的边界上,起到了限制作用,故称这一约束为点x'处的起作用约束,等式约束对所有可行点都是起作用约束。
3. 拉格朗日乘子
基本的拉格朗日乘子法(又称为拉格朗日乘数法),就是求函数 f(x1,x2,...) 在 g(x1,x2,...)=0 的约束条件下的极值的方法。其主要思想是引入一个新的参数 λ (即拉格朗日乘子),将约束条件函数与原函数联系到一起,使能配成与变量数量相等的等式方程,从而求出得到原函数极值的各个变量的解
4.KKT条件
min.:f(x)
s.t.:gi(x)≤0,i=1,2,…,p,
hj(x)=0,k=1,2,…,q,
x∈Ω⊂Rn
KKT条件是指在满足一些有规则的条件下, 一个非线性规划(Nonlinear Programming)问题能有最优化解法的一个必要和充分条件. 这是一个广义化拉格朗日乘数的成果. 一般地, 一个最优化数学模型的列标准形式参考开头的式子, 所谓 Karush-Kuhn-Tucker 最优化条件,就是指上式的最优点x∗必须满足下面的条件:
- 1. 约束条件满足gi(x∗)≤0,i=1,2,…,p, 以及,hj(x∗)=0,j=1,2,…,q
- 2. ∇f(x∗)+∑i=1pμi∇gi(x∗)+∑j=1qλj∇hj(x∗)=0, 其中∇为梯度算子;
- 3. λj≠0且不等式约束条件满足μi≥0,μigi(x∗)=0,i=1,2,…,p
更多概念参考:https://blog.csdn.net/weixin_37352167/article/details/84675233