¥
支付方式
请使用微信扫一扫 扫描二维码支付
请使用支付宝扫一扫 扫描二维码支付
类脑计算,是指仿真、模拟和借鉴大脑生理结构和信息处理过程的装置、模型和方法,其目标是制造类脑计算机和类脑智能,相关研究已经有二十多年的历史。与经典人工智能符号主义、连接主义、行为主义以及机器学习的统计主义这些技术路线不同,类脑计算采取仿真主义:结构层次模仿脑(非冯·诺依曼体系结构),器件层次逼近脑(神经形态器件替代晶体管),智能层次超越脑(主要靠自主学习训练而不是人工编程)。
本期CCF学科前沿讲习班《类脑计算》将从模拟生物神经元和神经突触的神经形态器件、神经网络芯片以及类脑计算模型和应用等方面对国内外研究进展进行介绍,探讨相关技术的未来发展趋势。本讲习班旨在帮助学员快速入门类脑计算原理和技术,了解学科热点以及应用方法,开阔科研视野,增进学术交流和增强实践能力。
CCF-ADL81期:
http://www.mooc.ai/course/114
2017年CCF-ADL78-87(10期全):
http://www.mooc.ai/course/87
潘纲
浙江大学
潘纲,浙江大学计算机学院教授、博导,计算机系统所副所长,CCF-IEEE CS青年科学家奖,入选教育部新世纪优秀人才支持计划。主要研究方向为计算机视觉、普适计算、类脑与脑机融合智能等。已发表论文100多篇(包括IEEE TPAMI、TNNLS、ACM Computing Surveys等国际权威刊物,以及CVPR, ICCV, IJCAI, UbiComp等国际权威会议),授权发明专利25项。获国际会议最佳论文奖4次,包括国际一流会议UbiComp’16最佳论文奖、UbiComp’15最佳论文提名奖(Honorable Mention Award)。相关成果入选2016年度中国高等学校十大科技进展,获国家科学技术进步奖二等奖(第2完成人)、教育部科技进步一等奖(第2完成人)。目前担任《IEEE Systems Journal》、《ACM IMWUT》、《Chinese Journal of Electronics》等期刊编委。
课程主题:从脑机接口到脑机融合
计算神经科学、微电子和神经生理学等领域的最新进展,显示出计算机和生命体之间的融合成为可能并日趋明显。以脑机接口为代表的神经技术的突破使得脑与计算机之间的结合越来越紧密,脑机融合及其一体化已成为未来计算技术发展的一个重要趋势。研究生物脑(生物智能)与机器脑(人工智能)深度融合并协同工作的新型混合智能系统,是当前人工智能与脑认知科学交叉领域面临的重要课题。本讲座将介绍脑机接口的基本原理与最新进展,并介绍新型人工智能形态——脑机融合的混合智能。