¥
支付方式
请使用微信扫一扫 扫描二维码支付
请使用支付宝扫一扫 扫描二维码支付
开通会员,立省99元 立即开通
类脑计算,是指仿真、模拟和借鉴大脑生理结构和信息处理过程的装置、模型和方法,其目标是制造类脑计算机和类脑智能,相关研究已经有二十多年的历史。与经典人工智能符号主义、连接主义、行为主义以及机器学习的统计主义这些技术路线不同,类脑计算采取仿真主义:结构层次模仿脑(非冯·诺依曼体系结构),器件层次逼近脑(神经形态器件替代晶体管),智能层次超越脑(主要靠自主学习训练而不是人工编程)。
本期CCF学科前沿讲习班《类脑计算》将从模拟生物神经元和神经突触的神经形态器件、神经网络芯片以及类脑计算模型和应用等方面对国内外研究进展进行介绍,探讨相关技术的未来发展趋势。本讲习班旨在帮助学员快速入门类脑计算原理和技术,了解学科热点以及应用方法,开阔科研视野,增进学术交流和增强实践能力。
CCF-ADL81期:
http://www.mooc.ai/course/114
2017年CCF-ADL78-87(10期全):
http://www.mooc.ai/course/87
吴思
北京师范大学
吴思,北京师范大学脑与认知科学学院教授,认知神经科学与学习国家重点实验室副主任,IDG/McGovern脑科学研究所研究员,主要研究方向是计算神经科学,尤其是神经信息处理的基本原理和模型。目前担任Frontiers in Computational Neuroscience主编,自动化学会《生物控制与生物医学工程专业委员会》主任。
课程主题:计算神经科学-连接脑科学与类脑计算的桥梁
计算神经科学的宗旨是用数学建模和仿真方法来阐明大脑的工作原理,为人工智能发展提供新思想和奠定理论基础。计算神经科学在脑科学与类脑计算之间起到了重要的桥梁作用。报告将简要介绍神经系统计算的一些重要特性,回顾计算神经科学发展的历史背景,并介绍一些神经信息处理的基本原理及实现的网络模型。