¥
支付方式
请使用微信扫一扫 扫描二维码支付
请使用支付宝扫一扫 扫描二维码支付
类脑计算,是指仿真、模拟和借鉴大脑生理结构和信息处理过程的装置、模型和方法,其目标是制造类脑计算机和类脑智能,相关研究已经有二十多年的历史。与经典人工智能符号主义、连接主义、行为主义以及机器学习的统计主义这些技术路线不同,类脑计算采取仿真主义:结构层次模仿脑(非冯·诺依曼体系结构),器件层次逼近脑(神经形态器件替代晶体管),智能层次超越脑(主要靠自主学习训练而不是人工编程)。
本期CCF学科前沿讲习班《类脑计算》将从模拟生物神经元和神经突触的神经形态器件、神经网络芯片以及类脑计算模型和应用等方面对国内外研究进展进行介绍,探讨相关技术的未来发展趋势。本讲习班旨在帮助学员快速入门类脑计算原理和技术,了解学科热点以及应用方法,开阔科研视野,增进学术交流和增强实践能力。
CCF-ADL81期:
http://www.mooc.ai/course/114
2017年CCF-ADL78-87(10期全):
http://www.mooc.ai/course/87
曾毅
中科院自动化所
曾毅,研究员,中国科学院自动化研究所类脑智能研究中心副主任,中瑞数据驱动神经科学联合实验室副主任,中国科学院脑科学与智能技术卓越创新中心青年骨干,中国科学院大学岗位教授。主要研究方向为:类脑认知计算建模、类脑学习理论、类脑智能机器人系统等。担任国际期刊Cognitive Systems Research (Elsevier), Computational Cognitive Science (Springer)的Associate Editor。
课程主题:类脑智能:从受脑启发到通用智能的探索
结构与机制类脑、行为类人的类脑智能近年来成为探索人类水平人工智能的重要途径之一。本报告将从人工智能、神经科学、认知科学交叉的视角介绍类脑智能的研究进展,并将着重介绍研究团队在大规模多尺度生物脑神经网络建模与模拟、类脑自主学习、多感觉融合、认知功能协同及其在无人机、机器人领域的智能应用方面的研究进展。在此基础上,将展望实现通用智能的核心科学问题,探讨机器自我意识的实现途径和初步尝试。